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The transverse migration of both clean and fully contaminated spherical bubbles rising
near a plane vertical wall in a quiescent viscous liquid is studied experimentally using
an optical technique. Knowing the bubble radius R, rising speed U and separation
distance L between the bubble centre and the wall as a function of time, the transverse
or lift component of the hydrodynamic force is determined as a function of L/R for
Reynolds numbers Re =2UR/ν less than 100 (ν is the kinematic viscosity). At low
Reynolds number, the lift force is directed away from the wall for both clean and
contaminated bubbles and its magnitude is found to be in good agreement with avai-
lable analytical solutions. For Re > 1, contaminated bubbles are still repelled from
the wall, but the magnitude of the lift force is always larger than predicted by the
low-Re theory, the difference being an increasing function of Re. The behaviour
of clean bubbles is markedly different as the experiments reveal that the lift
force is directed away from the wall for Re < 35 and toward it for higher Re. The
differences found in the evolution of the lift force for clean and contaminated bubbles
are analysed by considering the relative strength of two hydrodynamical mechanisms
of wall interaction, one being due to the vorticity generated at the bubble surface
while the other is due to the irrotational dipole associated with the bubble. Empirical
correlations based on the strength of these two mechanisms are derived to obtain
practical expressions of the lift force as a function of Re and L/R. At high enough Re,
clean bubbles rising sufficiently close to the wall are found to bounce very close to it.
Based on present and past experimental results, we suggest that this bouncing process
is essentially due to the competition between inertial and viscous effects, rather than
to bubble deformation as previously believed, and we propose that observations may
be explained by considering the effect of the vorticity present in the wall boundary
layer. Evaluation of the various contributions involved in the lateral force balance of
bouncing bubbles reveals the central role of history effects due to unsteady diffusion
of vorticity from the bubble surface.

1. Introduction
When a spherical particle moves parallel to a wall at non-zero Reynolds number,

it experiences a transverse or lift force. In the case where the fluid is at rest at
infinity, the origin of this force may in general be due to two different mechanisms. At
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finite Reynolds number, the vorticity produced at the particle surface diffuses and is
transported downstream in the wake. Owing to the presence of the wall, the velocity
field induced by this vorticity distribution exhibits some asymmetry with respect to
the plane parallel to the wall and containing the particle centre, thus resulting in a
transverse force. This mechanism has been studied in detail, both theoretically and
experimentally, in the low-but-finite Reynolds-number limit. Cox & Hsu (1977) and
Vasseur & Cox (1977) considered the case of rigid spheres, while Takemura et al.
(2002) (hereinafter referred to as TTMM) explored that of clean bubbles. For both
types of particle, the corresponding transverse force is directed away from the wall
and is a decreasing function of the separation distance between the particle and the
wall. On the other hand, inviscid irrotational theory predicts that the presence of
a wall (strictly speaking a symmetry plane) tends to accelerate the flow in the gap
separating the sphere from it, thus resulting in a transverse force directed towards the
wall (Milne-Thomson 1968, p. 563). A natural question is then which of these two
antagonistic effects is controlling the near-wall migration of a particle or a bubble
moving parallel to a wall at moderate Reynolds number (1 < Re < 100, typically).
When a clean spherical bubble rises at large Reynolds number, it is known that the
flow about it is almost irrotational, except in a thin boundary layer and a thin wake
(Moore 1963). Hence, for high enough Re, we can expect the irrotational mechanism
to dominate for such bubbles, so that they should migrate towards the wall. In
contrast, the amount of vorticity produced at the surface of a rigid particle is an
increasing function of the Reynolds number, so that we expect wake effects to be
important for such particles even at moderate-to-large Reynolds number. Thus, the
net result of the competition between the two aforementioned effects in this range
of Re is a priori less clear for rigid particles; nevertheless, compared to the case of
clean bubbles, it is likely that the vortical mechanism dominates over a wider range
of Reynolds number. Our purpose here is to explore these different situations and
the competition between the vortical and the irrotational mechanisms by considering
clean and contaminated bubbles.

It is well established that under usual conditions, small bubbles rising in water
behave as rigid particles, owing to the adsorption of surfactants at their surface (e.g.
Clift, Grace & Weber 1978; Magnaudet & Eames 2000 and references therein). In
particular, there is almost no difference between the drag of a contaminated bubble
and that of a solid sphere moving at the same Reynolds number. In contrast, the
surfaces of bubbles rising in hyperclean water (Duineveld 1995) or in silicone oil
(TTMM) remain clean, so that the surrounding liquid is submitted approximately
to a shear-free condition at the bubble surface. At low Reynolds number, this
difference in the boundary condition does not change the flow structure qualitatively.
Consequently, the low-Reynolds-number expression of the lateral force on a clean
bubble moving parallel to a wall in a liquid otherwise at rest differs from that
on a rigid sphere only by a numerical factor. As shown in TTMM, this factor is
(2/3)2, i.e. 0.444 approximately, a prediction confirmed by experiments. The central
question we have in mind here concerns the differences in the evolution of the
transverse force for the two types of bubble in the inertia-dominated regime, typically
1 <Re < 100 in the experiments reported below. In this regime, the vorticity generated
at the surface of a contaminated bubble increases strongly with Re (at high Re it
evolves as Re1/2 if the no-slip condition holds), while it increases only weakly with
Re in presence of a shear-free condition (the dimensionless vorticity at a shear-free
surface of given shape is independent of Re in the limit Re → ∞). Hence, we expect the
boundary layer and the wake structure of both types of bubble to become increasingly
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different as Re increases, which should result in different evolutions of the near-wall
migration.

2. Experimental procedure
The experimental facility, the bubble generation system, the optical technique and

the procedure used to measure the evolution of the bubble radius R and rise velocity
U parallel to the wall were extensively described in TTMM (see also Takemura &
Yabe 1999), so that this description will not be repeated here. The test section is a
500 mm long glass channel with a square cross-section of 50 × 50 mm2. The vertical
wall (see in TTMM how we ensure verticality) is a stainless steel plate 300 mm long
and 40 mm wide inserted in the middle of the cross-section and having its leading
edge located 200 mm above the bottom of the test section to avoid disturbances just
after bubble generation. The central part of the measurement system is an optical
device combining a CCD camera and a microscope and travelling vertically with the
rising bubble. The whole optical device is fixed on the vertical displacement system
which is driven by a step-by-step motor having enough torque to lift up 10 kg at
150 mm s−1. As the total weight of the camera and the microscope is about 2.5 kg,
the whole system can move without any vibration. A crucial quantity in the present
study is the horizontal distance L separating the bubble from the wall. To locate the
wall precisely, we first put the tip of a needle in contact with it, move the needle
horizontally along the plate until it comes to the centre of the field of the microscope
and focus the microscope on it. This gives us the reference horizontal position (z0

say) of the micrometric displacement system of the microscope for which the focus
coincides with the plate surface. Then, when following a bubble, we merely focus the
microscope on it at each vertical location, note the corresponding horizontal position
of the focusing system (zB say) and evaluate the separation distance as L = zB − z0.

All the experiments are carried out at room temperature and atmospheric pressure
using water or silicone oil (dimethyl siloxane polymer; Shinetsu Chemical Co. KF-96)
as the carrying liquid. To ensure that bubbles rising in water are contaminated, we
introduce 0.1 mol m−3 of pentanol (C5H11OH) into the batch of water. Despite this ad-
dition, the kinematic viscosity of the solution does not change and is 0.91×10−6 m2 s−1

at 20 ◦C. We select bubble radii from 50 µm to 450 µm, so that the corresponding
bubble Reynolds number ranges approximately from 1 to 100. To analyse the rise
of clean bubbles, we use two different silicone oils with kinematic viscosities of 1.08
10−6 m2 s−1 and 2.65 10−6 m2 s−1, respectively (hereinafter these two oils are referred
to as K1 and K2, respectively). As silicone oils are non-polar liquids, they are not
sensitive to the presence of minute amounts of surfactants and they remain naturally
‘hydrodynamically clean’. Variations of oil viscosity with temperature are determined
and taken into account in the data analysis as explained in TTMM. We select
bubble radii from 200 to 400 µm, so that the corresponding Reynolds number ranges
approximately from 10 to 90. To obtain an accurate optical description of the bubbles,
the resolution of the CCD camera is set to about 6.4 µm per pixel for bubbles with
R > 0.2 mm. For smaller bubbles, we use a lens with a higher magnification, so that
the resolution of the CCD camera is increased up to about 2.5 µm per pixel.

To verify that bubbles rising in silicone oil are clean whereas those rising in water
are fully contaminated, we evaluate the drag force acting on bubbles rising far from
the wall in both types of liquid. Having determined with the aid of the optical device
the bubble radius R and terminal rise velocity far from the wall U∞, we obtain the
experimental Reynolds number Reexp = 2RU∞/ν. We can also determine a ‘theoretical’
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Figure 1. Comparison of the theoretical (Rethe) and experimental (Reexp) bubble Reynolds
number. �, contaminated water; �, silicone oil.

Reynolds number Rethe by equating a closed-form expression of the drag force FD

to the buoyancy force. For this purpose, we assume that the drag force acting on a
contaminated bubble may be expressed using the well-known Schiller–Neumann drag
law (Clift et al. 1978, p. 111), namely

FD

6πµRU
= f (Re) = 1 + 0.15Re0.687, (1a)

where µ is the dynamic viscosity of the liquid. Similarly, we express the drag force on
a clean spherical bubble rising at finite Re by using the semi-empirical law proposed
by Mei, Klausner & Lawrence (1994), namely

FD

4πµRU
= h(Re) = 1 +

{
8

Re
+ 1

2

(
1 + 3.315Re−1/2

)}−1

. (1b)

Equating FD to the buoyancy force and neglecting the bubble density then yields

Rethe F(Rethe) =
4R3g

9βν2
, (2)

where β = 1 and F = f (resp. β = 2/3 and F =h) for a contaminated (resp. clean)
bubble, and g denotes gravity. Figure 1 shows how the ratio Rethe/Reexp obtained
by solving (2) evolves with Reexp in both types of liquid. The difference between
the experimental and the ‘theoretical’ Reynolds number never exceeds 3%, which is
within the uncertainty on the drag estimate provided by (1a, b). Hence, bubbles rising
in silicone oil can indeed be regarded as clean, whereas those rising in water are fully
contaminated and behave like solid spheres.

To evaluate the lift force acting on the bubble, we first calculate the migration
speed W by differentiating the time series of the separation distance L with respect
to time. In all cases where the transverse force is directed away from the wall, we
observed that the migration speed was accurately fitted by an empirical law of the
form W = AL−B . We determined the coefficients A and B for each series of data and
took advantage of this fit to obtain smooth evolutions of W for large separation
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distances. To determine the lift coefficient CL related to the lift force FL through
the definition FL = CLπR2ρU 2/2 (ρ denoting the liquid density), we assume that the
vertical (resp. horizontal) drag force exactly balances the buoyancy (resp. lift) force.
This quasi-steady approximation was discussed in TTMM and it was shown that
transient effects do not play any significant role in the force balance, except very
close to the leading edge of the wall. Assuming that this approximation still holds
under present conditions, the force balance in the vertical and transverse direction is,
respectively,

6βπµRF(Re)U (1 + CWU(L/R, Re)) = 4
3
πρR3g, (3a)

6βπµRF(Re)W (1 + CWW(L/R, Re)) = FL. (3b)

Note that in (3a, b) the exact definition of the Reynolds number is Re =
2R(U 2 +W 2)1/2/ν. However, the inclination angle W/U is always less than 0.02 in our
experiments, so that we approximate the bubble Reynolds number as Re ≈ 2RU/ν.
The first term in the left-hand side of (3a, b) is the drag force that the bubble would
experience if rising at Reynolds number Re along an inclined path in an unbounded
domain with the vertical (resp. horizontal) velocity U (resp. W ). Terms proportional
to CWU(L/R, Re) and CWW(L/R, Re) represent a near-wall correction to the drag
force. This correction can be determined analytically only in the limit Re → 0 (see
equations (A5) and (A7) of TTMM), or in that of a viscous irrotational flow (Kok
1993). A feature shared by both asymptotic limits is that, to leading-order (i.e. to
O(R/L) for Re → 0, and to O((R/L)3) in the limit considered by Kok), the ratio
CWW/CWU is equal to 2; that is the wall-induced correction to the drag of a bubble
moving perpendicularly to the wall is twice that on a bubble moving parallel to it.

To obtain a reasonable estimate of CWW at finite Re, we assume that this property
holds whatever Re. In the present experiments, the above assumption is unimportant
in the case of a contaminated bubble because the effect of the above near-wall
correction was found to be significant only for L/R � 2.5, a range of separations
which was reached only in presence of a clean bubble (compare the smallest values
of L/R in figures 4 and 7 for instance). As the ratio CWW/CWU is known to be
equal to 2 for both Re → 0 and Re → ∞ for a clean bubble and no extra mechanism
of interaction is expected to occur in between these two limits, the assumption that
this ratio does not deviate significantly from 2 at moderate Reynolds number seems
sound. Therefore we exploit (3a, b) as follows. Measurement of R yields the buoyancy
force, so that the value of the left-hand side of (3a) is known. Having determined
experimentally U and W at a given separation L allows us to evaluate Re and F(Re)
using (1a) or (1b). Then CWU(Re) is straightforwardly obtained using (3a) and we
evaluate the left-hand side of (3b) by assuming CWW(L/R, Re) = 2CWU(L/R, Re).

3. The wall-induced lift force
The photographs of figure 2(a) show four typical evolutions of a bubble rising near

the vertical wall. The trajectories corresponding to cases (i) to (iii) in figure 2(a) are
plotted in figure 2(b). Series (i) was obtained in silicone oil K2 and the Reynolds
number was about 27. The bubble migrates away from the wall with a migration
speed decreasing as the separation distance to the wall increases. Similarly, Series
(ii) shows that a contaminated bubble rising in water with a Reynolds number of
92 migrates away from the wall. The migration process observed in these two series
looks qualitatively similar to the low-Re situation described by Vasseur & Cox (1977)
and TTMM. In contrast, in series (iii) taken in silicone oil K1, we observe that
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(i) (ii) (iii) (iv)(a)

(6) 2.0 (6) 1.5 (6) 0.4 (6) 0.167

(5) 1.6 (5) 1.2 (5) 0.33 (5) 0.133

(4) 1.2 (4) 0.9 (4) 0.27 (4) 0.1

(3) 0.8 (3) 0.6 (3) 0.2 (3) 0.067

(2) 0.4 (2) 0.3 (2) 0.1 (2) 0.033

(1) 0 s (1) 0 s (1) 0 s (1) 0 s

Figure 2. (a) For caption see facing page.

a clean bubble rising with a Reynolds number of about 85 migrates towards the
wall. The evolutions depicted in series (ii) and (iii) for almost identical Reynolds
numbers demonstrate that contamination has a dramatic effect on the wall-induced
migration at moderate Reynolds number. In case (iii), the trajectory exihits two
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Figure 2. (a) Series of photographs showing typical bubble evolutions near the wall.
(i) silicone oil K2: R = 0.378 mm, U∞ = 93.3 mm s−1, Re= 26.6; (ii) water: R = 0.423 mm,
U∞ = 98.7 mm s−1, Re= 92.0; (iii) silicone oil K1: R = 0.327mm, U∞ = 140.0 mm s−1, Re∞ =
84.8, U = 115.0mms−1, Re = 70. (iv) silicone oil K1: R = 0.385 mm, U∞ = 185.0 mm s−1,
Re∞ =130.0. U = 135.0 mm s−1, Re= 96.25. (b) Trajectories corresponding to cases (i), (ii)
and (iii) in (a). (i) �; (ii) �; (iii) �.

markedly different stages. In the first of these, there is a clear attraction towards
the wall and the separation distance decreases strongly as the bubble rises along
the plate. Then, once the relative separation has reached a value about 1.3, it does
not evolve significantly any more and just exhibits small-amplitude oscillations about
this equilibrium value. This second stage clearly indicates that the transverse force
vanishes for L/R ≈ 1.3 at the corresponding Reynolds number.

Series (iv) in figure 2(a) (also taken in K1) shows a different evolution. Here, the
bubble rises very close to the wall and bounces at regular time intervals. Note that the
corresponding photographs indicate that the bubble motion is strongly slowed down
by the wall since Re = 96.2 (based on the local velocity U ) and Re∞ =130 (based on
U∞). Bouncing of a clean bubble rising along a vertical wall has already been reported
in the literature, especially by de Vries (2001). We shall comment on this situation in
more detail in § 4.

3.1. Contaminated bubble

Figure 3 shows the evolution of the lift coefficient CL vs. the dimensionless separation
L∗ = LU/ν for Reynolds numbers ranging from 1 to 100, approximately (see TTMM
for details concerning the determination of error bars). The quantity L∗ compares
the distance between the bubble and the wall to the viscous length ν/U and is
appropriate for Re < 1 because values of L∗ larger (resp. smaller) than unity then
indicate that the wall lies in the Oseen (resp. Stokes) region of the flow disturbance
due to the bubble, i.e. inertial (resp. viscous) effects dominate near the wall. In the
regime (Re � 1, L∗ � 1), Vasseur & Cox (1977) (for β = 1) and TTMM (for β = 2/3)
showed that the lift coefficient is a function of L∗ only, i.e. CL = CL0(L

∗) with

CL0(L
∗) =

9β2

πL∗2

∫ ∞

0

∫ 2π

0

χ + λ

χ − λ
(e−λ − e−χ )2λ dλ dφ, (4)
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Figure 3. The wall-induced lift coefficient CL of a contaminated bubble. �, Re∞ =0.96; �,
Re∞ = 2.5; �, Re∞ = 6.1; �, Re∞ = 14.3; �, Re∞ = 24.9; �, Re∞ = 43.8; �, Re∞ =57.5; �,
Re∞ = 72.9; �, Re∞ = 92.0; ——, numerical integration of (4) (β = 1); - - -, CL ∝ L∗−3.4.

where χ2 = λ2 + iλL∗ cos φ with i2 = −1. Here, we still use the dimensionless separation
L∗ in order to see how CL compares with CL0 at moderate Reynolds number. Note
that, owing to the limited lateral excursion of our optical device (20 mm), our data
cover only a limited range of L∗ (i.e. of L/R) for each value of Re. As shown in
figure 3, values of CL corresponding to Re =0.96 are in good agreement with the
expression of Vasseur & Cox (1977), thus providing additional confirmation that
bubbles are fully contaminated. For larger Re, the magnitude of the lift coefficient
strongly decreases and is about two orders of magnitude smaller for Re =O(102)
than for Re =O(1). Nevertheless, this decrease is much less severe than predicted
by the low-Re solution and figure 3 indicates that the ratio CL/CL0 reaches values
about 40 for Re =92. Hence, it is clear that for Reynolds numbers larger than unity,
CL is a function of both L∗ and Re. To interpret the variations of CL with Re and
correlate approximately its values to L∗ and Re, we note that figure 3 suggests that, to
a first approximation, the low-Re solution captures reasonably well the dependency
of CL with respect to L∗ for a given Re in the range 1 � Re � 100. A more careful
examination shows that for L∗ > 10, the slope of the experimental ‘curves’ decreases
with Re, ranging from about −2.1 for Re < 10 (this is the slope of the continous line
in the corresponding range of L∗) to about −3.4 for Re =O(102) (corresponding to
the slope of the dashed line). We shall come back to this feature later, but shall ignore
it for now. Hence, we first seek to approximate CL by writing

CL = CL0(L
∗)G(Re). (5)

To interpret physically the function G(Re), it is again useful to come back to the low-
Re situation. At low Reynolds number, the main difference between a clean bubble
and a rigid sphere lies in the intensity of the associated Stokeslet. More precisely,
the strength of the Stokeslet of a clean bubble is 2/3 that of a rigid sphere, a direct
consequence of this being that the maximum vorticity at the surface of a clean bubble
is 2/3 that on a rigid sphere. This is also why the drag force is proportional to the
factor β , as implied by (1a, b). In the same regime, (4) shows that the migration force
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Figure 4. The wall-induced lift coefficient CL of a contaminated bubble normalized by
CL0(L

∗)a2(Re). For caption see figure 3.

is proportional to β2. As explained in TTMM (see also Legendre & Magnaudet 1997),
this is because the lift force is due to the interaction of the wall with the far-field
disturbance induced by the Stokeslet. The strength of this far-field disturbance is
obviously proportional to that of the Stokeslet, i.e. β . Moreover, a unit velocity in
the far field results in a hydrodynamic force proportional to β . Combining both
steps of this reasoning shows immediately that the resulting lift force is necessarily
proportional to β2. Note that a slightly more elaborated physical reasoning also
allows us to understand the asymptotic variation of CL with L∗ for L∗ � 1 in the
low-Re regime. Given the x1/2 growth of the wake with the downstream distance x to
the particle and the self-similar evolution of the velocity disturbance on the wake axis
�u ∝ FD/(4πµx) in the far wake (Batchelor 1967, pp. 243, 349), it is straightforward
to show that the velocity defect in the wake reaches the wall for x ∼ ReL2/R, so
that �u(ReL2/R) ∝ (R/L)2FD/(4πµRRe) in this region. Assuming that the lift force
is directly proportional to this value of �u, i.e. FL ∼ βµR�u(ReL2/R), and noting
that FD ∼ βµRU, we find immediately CL0 ∼ β2L∗−2, which is indeed the asymptotic
behaviour of (4) for L∗ � 1, as shown mathematically by Vasseur & Cox (1977).

We now assume that at moderate Re the transverse force on a rigid sphere or
a contaminated bubble is still essentially due to the disturbance produced by the
interaction of the wall with the far-field velocity resulting from the vorticity generated
at the particle surface. As the far wake of a non-lifting body has a structure similar
to that of the Oseen wake (Batchelor 1967, pp. 351–352), we expect that the most
noticeable change compared to the low-Re situation lies in the strength of the vorticity
produced on the particle. Hence, following the above line of reasoning, we should
have G(Re) = a2(Re) in (5), with a(Re) characterizing the strength of the vorticity
at the bubble surface normalized by its value in the creeping flow limit. A typical
and simple measure of this strength may be obtained by defining a(Re) as the ratio
ωmax(Re)/ωmax(Re = 0), where ωmax is the maximum vorticity at the surface of the
bubble. The function a(Re) can then be approximated easily by examining values of
ωmax found in available numerical simulations of the uniform unbounded flow past
a rigid sphere. Using, for instance, data from Magnaudet, Rivero & Fabre (1995),
we find a(Re) ≈ 1 + 0.6Re1/2 − 0.55Re0.08. Figure 4 shows how CL(Re)/CL0(L

∗)a2(Re)
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evolves with Re and L/R. This ratio does not deviate from unity by more than 50%
over the whole range of Re covered by our experiments, thus reinforcing our physical
interpretation of the wall-induced migration mechanism.

Not surprisingly, the maximum deviations from unity in figure 4 are encountered for
the largest values of Re and L/R, and they suggest that our crude model overestimates
the tiny lift force that subsists in this regime. The reason for these deviations may
be understood by coming back to the physical argument developed above. While the
expression of the velocity defect �u in the wake is still valid, it is likely that at high
enough Reynolds number, the lift force is proportional to �u2 rather than to �u as
assumed in the above low-Re reasoning. If so, it immediately turns out that for a
given Re, CL(Re → ∞) is proportional to (L/R)−4 rather than to (L/R)−2. A similar
conclusion may be obtained by considering the nature of the disturbance flow near
the bubble and analysing how this disturbance interacts with the wall, and at which
order (in terms of R/L) it produces an asymmetry of the vorticity distribution with
respect to the plane parallel to the wall and containing the bubble centre. At low Re,
the disturbance flow is merely that produced by a Stokeslet, and it is well known that
the interaction of a Stokeslet with a wall induces an asymmetric flow about the bubble
(in the form of a linear straining flow and a stresslet) at O((L/R)−2) (e.g. Magnaudet,
Takagi & Legendre 2003). In contrast, at high Re, the flow outside the boundary layer
and the wake is irrotational, so that the disturbance is essentially that produced by a
dipole. Because of its faster decay as the distance to the bubble centre increases, the
interaction of such a disturbance with the wall produces a linear straining flow (and
a quadrupole) only at O((L/R)−4). Hence at high Re, the boundary layer around the
bubble (and therefore the wake) exhibits an asymmetry only at O((L/R)−4), so that
the transverse force associated with the vortical mechanism considered up to now
decays much faster with increasing L/R than in the low-Re regime. What the present
experimental results suggest is that for Re= O(102) the situation is intermediate
between the above two asymptotic limits, since figure 3 shows that for Re= O(102)
the transverse force decays approximately as FL ∼ (L/R)−3.4 (see the slope of the
dashed line). To take into account the above transition between the low- and high-Re
regimes, we may simply multiply expression (5) by a factor (L/γR)g(Re) where γ is an
empirical constant and g(Re) is an empirical function giving the correct asymptotic
behaviour of the transverse force at both low and high Reynolds number, i.e. g(0) = 0
and g(Re → ∞) = −2 (since CL0(L

∗) ∝ (L/R)−2 for L∗ → ∞). According to present
experimental results, we have g(Re) ≈ −2.0 tanh(0.01Re) and γ ≈ 3.0. Summarizing,
the complete model of the lift coefficient becomes

CL = CL0(L
∗)a2(Re)(L/γR)g(Re), (6a)

with

γ ≈ 3.0, g(Re) ≈ −2.0 tanh(0.01Re), a(Re) ≈ 1 + 0.6Re1/2 − 0.55Re0.08. (6b)

Moreover, for practical purposes it is worth noting that the exact expression (4) for
CL0(L

∗) is accurately fitted by

CL0(L
∗) =

{
(9/8 + 5.78 10−6L∗4.58)β2 exp(−0.292L∗) for 0<L∗ < 10,

8.94β2L∗−2.09 for 10 � L∗ < 300.
(6c)

Figure 5 shows how this improved model compares with the experimental results.
The prediction (6a–c) is almost independent of L/R and does not deviate from
experimental values by more than approximately 20%, which is the typical order of
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Figure 5. The wall-induced lift coefficient CL of a contaminated bubble normalized by
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Figure 6. The wall-induced lift coefficient of a clean bubble for Re< 30.0. �, Re∞ =0.8;
�, Re∞ = 4.6; �, Re∞ = 7.2; �, Re∞ =16.0; �, Re∞ = 24.9; �, Re∞ = 26.6; ——, numerical
integration of (4) (β = 2/3).

magnitude of the experimental uncertainty on CL. The fit could probably be improved
by optimizing γ , a(Re) and g(Re) using experimental and numerical data. However,
our present purpose is mainly to present simple physical arguments by which a
reasonable scaling of the lift force can be obtained. Keeping in mind this objective
and the significant uncertainty on our measurements, we shall not try to perform such
an optimization here.

3.2. Clean bubble

Figure 6 displays the lift coefficient of a clean bubble as a function of L∗ and Re for
Re < 30 (the three sets of data corresponding to Re < 10 were taken from TTMM).
The migration force is still directed away from the wall. Its intensity agrees with



246 F. Takemura and J. Magnaudet

CL

L/R

1 2 3 4
–0.025

–0.020

–0.015

–0.010

–0.005

0

0.005

Figure 7. The wall-induced lift coefficient of a clean bubble for 45 <Re< 90. �, Re∞ = 48.6;
�, Re∞ = 58.0; �, Re∞ = 68.9; �, Re∞ = 84.8; ——, equation (7).

the low-Re expression (4) (with β = 2/3) up to Re = O(1) and becomes larger than
predicted by (4) for larger Reynolds numbers. Nevertheless, in contrast with the
evolution observed for a contaminated bubble, the ratio CL(Re)/CL0(L

∗) does not
exceed a value of 3.0; moreover, this ratio tends to decrease for the highest values of
Re because of the transition from a −2 slope to a −4 slope, as discussed above.

Figure 7 shows the variations of CL vs. L/R at somewhat higher Reynolds number,
namely 40 <Re < 90. The corresponding ‘curves’ are totally different from those
discussed up to now. The lift coefficient is negative in the whole range of L/R

over which we were able to determine the transverse velocity, indicating that the
interaction force is now directed towards the wall. For a given L/R, the absolute
value of CL increases with Re and saturates for the highest Reynolds numbers reached
in the experiment. For a given Re, |CL| decreases rapidly as the separation increases
and is less than 10−3 for L/R > 4. We also note that the lift coefficient exhibits a
minimum near L/R = 1.6. For smaller separations, the few experimental points that
were obtained indicate that |CL| decreases sharply as the wall is approached. A stable
equilibrium position exists near L/R = 1.3, in line with the trajectory (iii) displayed in
figure 2(b). As we could not inject bubbles extremely close to the wall, the vanishing
of the lift force for L/R ≈ 1.3 prevents non-bouncing bubbles to enter the region
L/R < 1.3; this is why no data point is found in this region in figure 7.

The physical mechanism that gives rise to a negative, i.e. attractive, lift force is und-
oubtedly related to the well-known feature that, according to irrotational flow theory,
two spheres rising side-by-side (or equivalently a sphere in presence of a symmetry
plane) are attracted along their line of centres because the fluid velocity reaches a
maximum between them, thus inducing a pressure gradient directed away from the
symmetry plane. Once the corresponding velocity potential is known, the irrotational
interaction or lift coefficient CL∞ may be evaluated, yielding (Miloh 1977; Biesheuvel
& van Wijngaarden 1982; Kok 1993)

CL∞ = −3
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What figures 6 and 7 suggest is that the vortical mechanism described in § 3.1
dominates the interaction process for Re < 30 while the irrotational mechanism
becomes dominant at higher Re, except very close to the wall. This is in line with
the fact that as Re increases to infinity, the strength of the vorticity produced at the
surface of a clean spherical bubble remains bounded (see below), and that the flow
field past the bubble becomes close to that predicted by irrotational theory, except in
a thin boundary layer and a thin wake (Moore 1963).

To analyse the variations of CL over the whole range of Re corresponding to
figures 6 and 7, we assume that for moderate separations the total lift force mainly
results from the linear superposition of the vortical and irrotational mechanisms
described above. Following the procedure used in § 3.1, we estimate the strength of the
vortical mechanism through (6a–c) (with β = 2/3) now with a(Re) replaced by b(Re),
the function b(Re) representing the relative strength ωmax(Re)/ωmax(Re = 0) of the
maximum vorticity at the buble surface. Using again numerical data from Magnaudet
et al. (1995) for shear-free bubbles, we find b(Re) ≈ 1 + 2.0 tanh(0.17Re0.4 − 0.12Re0.05)
(following Batchelor 1967, p. 366, the vorticity on a spherical shear-free surface is
3U/R for Re → ∞, so that b(Re → ∞) = 3). To estimate the strength of the irrotational
mechanism, we may use results from direct numerical simulations for the local pressure
coefficient CP = 2(P − P∞)/ρU 2 at the bubble surface. More precisely, selecting an
angular position θ on the bubble and examining how CP (θ) varies with Re when
the bubble rises in an unbounded domain yields a direct information on the strength
of the dipole associated with the irrotational contribution to the flow about it.
For instance CP is zero on the equatorial plane of the bubble (θ = π/2) under
creeping flow conditions (i.e. when the strength of the dipole is zero) and becomes
equal to −5/4 in the limit of irrotational flow. According to the numerical results
of Magnaudet et al. (1995), we find that −4CP (π/2)/5 evolves approximately as
c(Re) = 1− exp(−0.22Re0.45). Note that applying the same procedure to the case of
a contaminated bubble suggests that the relative strength of the dipole ranges from
zero at low Re to 0.4 at high Re; hence, in this case, the irrotational mechanism yields
only a small correction to the vortical effect described in § 3.1 over the whole range
of L/R and Re covered by our experiments. In contrast, this contribution becomes
certainly crucially important at higher Re because (6a, b) and (4) suggest that the
vortical effect is proportional to Re−1(L/R)−4 for Re → ∞, whereas the attractive
irrotational effect is merely proportional to (L/R)−4 and eventually dominates when
the Reynolds number is large enough. This is in line with the numerical results of
Kim, Elgobashi & Sirignano (1993) who performed direct numerical simulations of
the side-by-side motion of two rigid spheres, and observed that the interaction force
is attractive for large enough Re and L/R.

Collecting the above ingredients, our model for the lift coefficient on a clean
spherical bubble rising at moderate Re becomes

CLM

(
Re,

R

L

)
= b2(Re)CL0(L

∗)(L/γR)g(Re) + c(Re)CL∞

(
R

L

)
(8)

Figure 8 shows how CLM compares with the measured lift coefficient for all data
points reported in figures 6 and 7. It turns out that in spite of a significant dispersion
for 2.5< L/R < 3.5 due to the scattering among the small negative values of CL in this
range of separation (see figure 7), the ratio CL/CLM is about 1 as we expected from
the previous analysis, except for small separations, typically L/R < 1.8. This confirms
that in most cases the wall-induced lateral motion of a clean spherical bubble rising
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Figure 8. The wall-induced lift coefficient CL of a clean bubble normalized by CLM .
For legend see figures 6 and 7.
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Figure 9. Two typical trajectories corresponding to case (iv) in figure 2(a). �, �, experimental
data; ——, L(t)/R = 1.34 + 0.263 sin(60.1t); - - -, L(t)/R =1.27 + 0.250 sin(61.1t).

at moderate Re may be understood as resulting mostly from a linear superposition
of the attractive irrotational mechanism and the repulsive vortical effect.

4. Bouncing of clean bubbles
We saw in figure 2(a) that clean bubbles with a high enough Reynolds number

may bounce on the wall or very close to it. Figure 9, in which two of the corres-
ponding trajectories are reported, allows us to specify some features of the bouncing
phenomenon. First, the excellent agreement obtained by approaching the observed
trajectories with a sinusoidal fit indicates that the motion is periodic with a frequency
about 9.65 Hz. Secondly, as the minima of L/R are about 1.12 and 1.07, respectively,
we have a clear indication that the bubbles do not touch the wall. Hence, the
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bouncing observed in our experiments is purely hydrodynamical. As suggested by the
photographs of series (iv) in figure 2(a), the bouncing bubbles are slightly deformed,
the maximum deformation obtained from the ratio of the major and minor axes
being about 8% in this series (see TTMM for details about the determination of
the deformation). It is then tempting to attribute the occurrence of the bouncing
phenomenon to this deformation. Based on previous work devoted to bouncing and
coalesence of a pair of bubbles moving along their line of centres (e.g. Tsao &
Koch 1994), de Vries (2001) concluded that in pure water, bubbles bounce or slide
along a vertical wall depending on whether the value of the Weber number based
on the horizontal velocity W is larger or smaller than a critical value. Moreover, the
deformation-induced migration of a bubble rising near a vertical wall was evaluated
in the limit Re → 0 by Magnaudet et al. (2003), and they showed that it does provide
a repulsive contribution to the overall lift force.

Nevertheless, reconsidering de Vries’ observations in water together with results
reported here in silicone oil K1 suggests a different interpretation. The comparison is
particularly revealing for these two fluids because they have roughly the same physical
properties, except for surface tension which is about 4.3 times smaller in K1. In de
Vries’ experiments, the smallest bouncing bubble had a radius of 0.40 mm, a near-wall
Reynolds number Re ≈ 90, and a Weber number We =2 ρ U 2R/σ ≈ 0.14, σ being the
surface tension. Here, we may say thet the onset of bouncing occurs for the bubble
shown in series (iii) of figure 2(a), as we could not discern any near-wall oscillation
on the trajectory of a slightly smaller bubble with Re= 65. In series (iii), the bubble
has a radius of 0.327 mm, a Reynolds number about 70, and a Weber number about
0.41. Therefore, comparing with de Vries’s results we see that the critical Reynolds
number is in the same range in both fluids, whereas the critical Weber number is
about three times larger in K1 than in pure water. This strongly suggests that the
critical condition for the occurrence of bouncing has more to do with the ratio of
inertial to viscous effects than with that of inertial to capillary effects.

Based on this remark, our interpretation is that the essential near-wall repulsive
effect that induces the bouncing of nearly spherical clean bubbles when they rise
parallel to a wall is due to the shear rate existing in the gap between the bubble and
the wall. The thickness of the wall boundary layer is typically 0.1R for Re =O(102).
Owing to the structure of the irrotational flow past a sphere, the vertical velocity
is about −U/2 on the equator of the bubble (the velocity is directed downwards in
this plane). Hence, when L/R → 1, the vertical velocity in the equatorial plane of the
bubble has to decrease from zero at the wall to O(−U/2) at the edge of the boundary
layer, yielding a wall vorticity about −5U/R. There is also a second boundary layer
of similar thickness on the bubble, the existence of which is required to satisfy the
shear-free boundary condition at the bubble surface (Moore 1963). The corresponding
vorticity is about 3U/R as we saw above, and it reduces the negative vertical velocity
by O(Re−1/2U ) at the bubble surface. When L/R → 1, the two boundary layers interact
and the flow in the gap looks roughly like a lubrication flow of Reynolds number

Rel ≈ U

2

(L − R)

ν
=

Re

4

(
L

R
− 1

)
.

This estimate yields Rel ≈ 2.5 for Re = 102 and L/R = 1.1, showing that viscous effects
play a large role in the gap. Compared to the irrotational prediction, it is clear that
the two boundary layers reduce the maximum velocity in the gap. Since the existence
of an absolute maximum of the vertical velocity in the gap is the source of the
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attractive interaction force in the irrotational limit, we infer that as L/R decreases,
these boundary layers (especially that due to the no-slip condition at the wall) reduce
the attractive force and finally change its sign for small enough separations. More
experiments are clearly required to settle the matter definitely and the effectiveness of
the mechanism just described has to be studied specifically, but we believe that the
arguments presented here strongly support this scenario based on the competition
between viscous and inertial effects.

Obviously the above ‘boundary layer’ effect also exists for contaminated bubbles
and rigid spheres and is even stronger for them than for clean bubbles because the
vorticity at the particle surface is much larger. Nevertheless, we saw that in presence
of a no-slip condition at the bubble surface, the vortical repulsive effect dominates
over the irrotational attractive mechanism at moderate Reynolds number; hence,
compared to the case of clean bubbles, the bouncing phenomenon can only occur
at much higher Re for rigid particles. Under such conditions, the picture is probably
much more complicated than that described here because the wake is turbulent, so
that mechanisms not considered here are involved in the wall–particle interaction
process.

Finally, it is of interest to discuss the transverse force balance on the bouncing
bubbles corresponding to figure 9. As we saw, the evolution of the distance L(t)
separating them from the wall is accurately fitted in the form L(t)/R = ε0 + ε sin ωt

with ε0 ≈ 1.30 ± 0.03, ε ≈ 0.256 ± 0.005, ω ≈ 60.6 ± 0.5 Hz. Then it turns out that the
dimensionless radian frequency ωR2/ν is about 8.3, which implies that effects of
temporal acceleration are about one order of magnitude larger than viscous effects
and cannot be neglected in the force balance. In other words, the quasi-steady
approximation (3b) that we used up to now to evaluate the lift force does not hold
when bubbles bounce. The correct force balance must include the added-mass force
resulting from the lateral acceleration of the liquid displaced by the bubble, as well
as the so-called history contribution to the lateral drag force due to the unsteady
diffusion of the vorticity about the bubble. We then write

4
3
πR3ρCM

dW

dt
+ 4πµR

[
h(Re)W (1 + CWW) +

∫ t

−∞
K(t − τ )

dW

dτ
dτ

]
= πR2ρCL

U 2

2
. (9)

In (9), K(t − τ ) is the kernel of the history contribution, h(Re) is the finite-Re
correction to the quasi-steady drag force as given by (1b), CM is the added-
mass coefficient corresponding to a sphere moving perpendicularly to a plane
(CM ≈ (1+3(R/L)3/8)/2, Milne-Thomson 1968, p. 563), and CWW is the corresponding
near-wall correction to the quasi-steady drag force on a high-Re spherical bubble
(CWW ≈ 3(R/L)3/4, Kok 1993). The history kernel is only known analytically in the
time domain in the limit of an unbounded unsteady Stokes flow (Yang & Leal 1991),
in which case K(t − τ ) = 2erfc[3(ν(t − τ )/R2)1/2] exp(9ν(t − τ )/R2). Mei & Klausner
(1992) and Lovalenti & Brady (1993) studied in detail the long-time effect of inertial
corrections on this kernel. Based on their results, Mei et al. (1994) proposed an
empirical form of K(t − τ ) supposed to be valid whatever the time lag t − τ and the
bubble Reynolds number Re.

Rather than attempting to check these various forms of the history kernel, we may
find some insight into the magnitude and influence of the history force by evaluating
all other contributions in (9). For this purpose, using the above expression for L(t),
we deduce W = εRω cos ωt , dW/dt = −εRω2 sin ωt . Moreover, figure 7 suggests that
it is reasonable to consider that the quasi-steady lift coefficient evolves linearly in
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the range 1.3 � L/R � 1.6. Assuming that this is still the case for smaller separations,
we have approximately CL ≈ −0.07(L/R − ε0) for L/R in the range ε0 ± ε. Note
that if we neglect the possible changes of the rise velocity U with L/R within this
range, this linear variation of CL is compatible with the existence of a sinusoidal
evolution of the separation distance L(t). We are now in a position to evaluate the
order of magnitude of the various contributions in (9). To make the comparison
with CL easy, we normalize each of them by πR2ρU 2/2. When L/R = ε0, the
lift force and the added-mass force both vanish. The force balance (9) implies
that the history contribution then exactly balances the quasi-steady drag whose
magnitude is ±16h(Re)(1 + CWW)εRω/URe ≈ ±0.023. When the separation reaches
its maximum, i.e. L/R = ε0 + ε, the lateral component of the quasi-steady drag is
zero, the lift coefficient is about −0.018 and the dimensionless added-mass force is
−(8/3)εCM (Rω/U )2 ≈ −0.011. Hence, the dimensionless history force must be about
−0.007. Similarly, for L/R = ε0 − ε, the history contribution should be about 0.005,
the added-mass force then being somewhat stronger than for L/R = ε0 + ε, owing to
the increase of CM with decreasing separations. Averaging the last two results yields
approximately

1

U

∫ t

−∞
K(t − τ )

dW

dτ
dτ ≈ −0.14 cos ωt − 0.035 sin ωt.

Compared with the relative value of all other three lateral forces, we see that the
history contribution has a similar or even larger magnitude. The physical origin of
such a significant lateral component of the history force may be understood by noting
that the large value of ωR2/ν implies that the frequency of the lateral motion is
too high for the bubble wake to be perfectly aligned at all times with the bubble
velocity. That is, there is some time-dependent misalignment between the wake and the
instantaneous angle W (t)/U of the bubble path, which necessarily results in a lateral
force. To conclude, the above analysis shows that the lateral history force can by no
means be neglected in the force balance (9), especially for L/R ≈ ε0. In other words,
any Lagrangian computation of the bubble motion in which the history contribution
would be either neglected or inaccurately modelled would fail to reproduce correctly
the trajectories displayed in figure 9.

5. Conclusions
We have studied experimentally the wall-induced migration of bubbles rising near

a vertical wall in a quiescent liquid in the regime 1 � Re � 100. Using silicone oil and
water artificially contaminated by pentanol allowed us to produce both clean and
fully contaminated bubbles. Within the range covered by our experimental conditions,
the latter are always repelled by the wall and the corresponding repulsive force
decreases with increasing Re and L/R. We showed that, provided a correction factor
is introduced to take into account the variation of the amount of vorticity produced
at the bubble surface with Re, the corresponding transverse force scales fairly well
with the low-Re expression derived by Vasseur & Cox (1977). This agreement led us
to conclude that for moderate Re, the repulsive wall-induced force acting on rigid
spheres and contaminated spherical bubbles is still due to the interaction of the
wall with the far-field of the particle wake. We also showed that since the near-field
disturbance produced by the bubble changes from that associated to a Stokeslet at
low Re to that produced by a dipole at high Re, the dependency of the transverse force
with respect to the relative separation L/R must change from (L/R)−2 to (L/R)−4 as
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Re increases. Based on this argument, we introduced an empirical correction into our
initial model and obtained an improved agreement with experiments.

The case of clean bubbles was found to be more complex, since bubbles correspon-
ding approximately to Re < 35 were found to be repelled by the wall whereas those
corresponding to larger Reynolds number are attracted for most values of L/R. We
guessed that the repulsion had the same origin as that observed for contaminated
bubbles, whereas we attributed the attractive force to the lateral pressure gradient
predicted by irrotational flow theory. To check this idea we built a crude model
combining linearly both mechanisms, and we estimated the strength of both of them
through empirical functions of Re extracted from available numerical simulations.
This model was found to reproduce correctly the experimental tendencies for moderate
separations (L/R > 1.8) over the whole range of Re. For large enough Re and small
separations, typically Re > 85 and L/R < 1.6, experiments showed that bubbles slightly
deform and bounce very close to the wall. Previous studies analysed the bouncing
mechanism as resulting from this deformation; however, a comparison of present
data with de Vries’ (2001) results obtained in pure water suggests that the critical
condition for bouncing is related to the rise Reynolds number rather than to the
Weber number. Based on this finding and on a crude analysis of the flow structure
in the gap between the bubble and the wall, we guess that a boundary-layer effect
that reduces the maximum vertical velocity in the gap is responsible for the bouncing
mechanism, without any need to invoke deformation. We also used the detailed data
obtained with bouncing bubbles to analyse the magnitude of the various contributions
in the transverse force balance. This analysis revealed that the history force plays
a crucial role, especially near the location where the lift force vanishes, and must
accurately be modelled in order for the periodic lateral motion associated with the
trajectories of bouncing bubbles to be properly predicted.

Present results clarify some of the physical mechanisms that contribute to the wall-
induced migration of particles and bubbles settling or rising near vertical walls at
moderate Re. Empirical estimates of the transverse force, like (6) for contaminated
bubbles and rigid spheres or (8) for clean bubbles, may be used in practical calculations
to obtain a crude evaluation of the effect of this force on the overall flow, especially
to determine the radial distribution of bubbles and particles in pipes. Nevertheless,
it must be kept in mind that these expressions have limitations, especially for small
separations. Full numerical simulations, possibly including effects of deformation, are
highly desirable in order to obtain more accurate and more complete variations of the
lift force and of the transverse history force over the full range of particle Reynolds
number and separation from the wall.

We are indebted to Dr D. Legendre and Dr S. Takagi for helpful discussions on
the problem addressed in this work.
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